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NOVEL CONTRIBUTIONS TO MICROWAVE CIRCUIT DESIGN
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ABSTRACT

Dr. S. B. Cohn’s work in two areas is described. One is
slot line which he introduced in 1968. The other is circuit
design by equal ripple optimization which appeared in a
1974 paper.

INTRODUCTION

Dr. S. B. Cohn’s contributions to the microwave art -
both in theoretical and in practical design have been very
numerous and have covered a wide range of circuit forms.
This presentation is an attempt to describe and set in per-
spective two significant contributions. One is the introduc-
tion in 1968 of a new concept for a microwave transmis-
sion line which Dr. Cohn called Slot Line [48]. A complete
analysis followed in 1969 [50] and other papers [51,
53, 54] in the next two years. The other is the develop-
ment of a computer optimization technique for networks
such as filters or couplers that have a pass band response
differing from the ideal by an equal ripple error [55]. In
later papers on filter design [56] and coupler design [59]
he used the optimization technique for the design of the
circuits discussed.

Although this paper is mainly concerned with these
important contributions themselves, the presentation will
attempt to show some of the later applications of slot line in
microwave components as well as some of the later applica-
tions of the equal-ripple optimization algorithm to the
design of various microwave circuits.

SLOT LINE

Slot line was proposed by Dr. S. B. Cohn in 1968 [48]
and his analysis was published in 1969 [50]. Dr. Cohn
introduced the concept with the idea that it would be very
useful for microwave integrated circuits in conjunction with
microstrip line which can occupy the other side of the
dielectric substrate. Slot line is quite similar to fin line
that was introduced in 1972 by P. J. Meier as a medium
primarily useful for integrated circuits at millimeter
wavelengths. (See - P. J. Meier, “Two new integrated cir-
cuit media with special advantages at millimeter wave-
lengths”, IEEE 1972 G-MTT Symposium Digest, pp 221-
223). It is interesting to note that Dr. Cohn’s analysis
which included only two of the four waveguide walls needed to
enclose fin line can be extended to include this case if the fin
line gap is small enough relative to the waveguide height for
certain assumptions, about the nature of the fields in the gap
to be valid.

Dr. Cohn analyzed slot line by a resonance method
wherein a section of slot line on dielectric is arranged to
extend across a rectangular waveguide in the manner of a
capacitive iris. This is depicted in Figure 1 reproduced
from his paper. Here the y axis is vertical, the z alxis is in
the direction of normal wave propagation in the waveguide
and the x axis is perpendicular to the page. In all r(egions
the fields can be determined by summing the infinite set of
known rectangular waveguide modes. In particular the
fields at the center of the slot line section (z=O, y=O, x =
af2) were determined in terms of the fields in the full
height regions on either side of the metalization. This was
done by application of the metallic wall boundary condition
above and below the slot. Also the approximation was made
that the E field has only a y component which has a constant
value within the slot region (from y = -w/2 to +w/2).
The admittance at the center of the slot line section was
determined in terms of the infinite summation of wave
admittances of all the full height waveguide modes calculated
at the plane of the slot, line metalization.

The waveguide mode admittances were calculated look-
ing in both directions down the rectangular waveguide (i.e.,
in the plus and minus z direction). The standard transmis-
sion line impedance transforming equations were used to
take account of the dielectric/ air interface at z = d. A
metal wall beyond this point and a metal wall to the left
could be taken into account in the same manner, in which
case, the results could be applied for unilateral fin line.
The approximation regarding the fields in the slot would
have to be valid for the fin line. Although this additional
step was not taken in Dr. Cohn’s original work, he aldded it
to his analysis on May 18, 1970 and it appears in his
unpublished notes of that date.

Having computed the total admittance at the celrtterof
the slot line section (x = a/2, y = O, z = O), the condition
was then found for which it is zero. This is the resonance
condition at which a standing wave exists on the slc)t line
with exactly one half a slot line wavelength occupying the
distance between waveguide side walls. In other words, at
resonance, the slot line wavelength X is equal to 2tI. For a
given set of dimensions the equation which sets susceptance
equal to zero is solved (by iteration) for the frequency.
This determines the wavelength ratio k’/L for that fre-
quency (here k is the free space wavelength). To find a set
of values over a range of frequencies the slot line length, a,
is varied over a wide range, repeating the solution process.
Dr. Cohn showed how the slot line impedance could be com-
puted by finding, in addition, the derivative of the auscep-
tance with respect to the wavelength ratio at resonance.
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In a 1969 paper [51] a set of very useful slot line
design graphs was published. These are plots of the slot line
wavelength ratio V/l and the characteristic impedance, Zo,
against the normalized frequency variable d/k for different
values of w/d (see Figure 1 for dimensions). Design graphs
were made available for dielectric constants of 9.6, 11.0,
13.0, 16.0, 20.0. This paper also provided results of a
number of measurements on a number of slot lines of
different dielectric constants indicating good agreement
with the theory. Transitions from microstrip to slot line
were also tested. These showed that for a 50 ohm micro-
strip the theoretical slot line impedance as defined earlier
should be 75 ohms for a low SWR transition. This has been
confirmed by other workers and the discrepancy may be
largely a result of the choice of impedance definition. In
1971 and 1972 Dr. Cohn published extensions of his ear-
lier analysis. One was sandwich slot line [53] which con-
tains dielectric on both sides of the slot plane. In the other
[54] all of the fields at x = a/2, y = O were computed for
different values of z. A number of plots of HXand HZ against
z were shown. These showed elliptical polarization of the
magnetic field to exist outside the metalized substrate on
both sides with best circularity close to the surface. This
paper also dealt with the problem of the approximations
made in the earlier slot line analysis in which the assumpt-
ion was made that the E field in the slot plane was all in the
y direction and was constant across the slot. In this paper
a new result just for fields very close to the slot was
derived from a low frequency approximation involving a
conformal transformation.

Dr. Cohn’s work on slot line was a significant contri-
bution in the field of MIC component design. H has found its
major use as a balanced transmission line in all kinds of
balanced microwave circuits, such as mixers, frequency
multipliers and dividers, push-pull amplifiers. In com-
bination with microstrip and coplanar waveguide it has
been used in various forms of planar hybrid junctions. [n a
symmetrical housing when excited by a microstrip or
coaxial transition it forms an excellent balun. In this case
the signal is accurately balanced through symmetry a short
distance from the transition. The elliptical polarization of
the magnetic field near the slot has possible applications for
coupling to ferrites and also to dielectric resonators.

CIRCUIT DESIGNBY EQUAL RIPPLEOPTIMIZATION

Most optimization techniques use general forms of
error minimization algorithms (see, for example, refer-
ence 2 in [55]) which generally do not allow all of the
information known about a very specific network like a
filter to be utilized. Usually the response of an optimizable
network is sampled at a number of equally spaced fre-
quencies and the error between this sampled response and
the desired response is computed at each frequency. The
optimization program, through an iterative process,
reduces this error to a minimum, arriving at a final
network design in terms of the optimized circuit parameter
values. In a filter, whose response is expected to have an
equal ripple error (vs. frequency) the frequencies at which
the peaks of the error will occur are either known exactly
or to a close approximation prior to optimization. This
information can be used to advantage.

An important contribution in this field was made by
Dr. S.B. Cohn in 1974 [55]. In this paper he describes a
very efficient optimization process in which all known
information about the filter is fully utilized. The types of

filters considered in the paper are those which are not
directly synthesizable by the methods of modern network
theory but do closely resemble them. Examples are filters
in which lumped circuit elements are mixed with dis-
tributed elements and filters that have distributed elements
that are non-commensurate. As in the case for direct syn-
thesis the optimized filter circuit has to be non-dissipative.

In Dr. Cohn’s algorithm the equal ripple error function
is required to have equal amplitude peaks which alternate in
sign from one frequency sample to the next as shown in
Figure 2(b). The reason for this is that the algorithm
forces only the peaks and, if they alternate in sign, the zero
crossings are assured. With some network functions, such
as the input susceptance of a singly terminated filter or the
coupling of a directional coupler, the error does have
alternating sign because it oscillates about a non-zero
value. For a matched filter, however, this is not the case
for either the transmission or reflection coefficient
magnitudes.

Fortunately, as pointed out in Dr. Cohn’s paper [55]
and in his reference number 4, a function exists which has
the same magnitude as the reflection coefficient but does
alternate in sign. In terms of A B C D matrix parameters
this function is E/jF where E = B-C and F = IA+B+C+DI.
It applies only to lossless symmetrical networks (where A
and D are real, A=D, and B and C are both imaginary).

Referring again to Figure 2, reproduced from
Dr..Cohn’s paper, the final result of an optimization is
shown. The upper plot is the actual reflection coefficient
magnitude while the lower one is the corresponding alter-
nating sign function peculiar to symmetrical Iossless net-
works. At the start of the optimization process a set of
estimated peak frequencies is supplied to the program.
These do not have to be exactly where the final peaks appear
but they have to be close enough to be within the space
between the appropriate final zeros. These starting sample
frequencies are computed from an approximation function
which suits the particular type of filter - much the same
as would be used in a synthesis problem. Also supplied to
the program are starting parameter values for all the filter
equivalent circuit elements.

The procedure next involves the computation of func-
tion values and derivatives (with respect to all optimizable
parameters) at the sample frequencies. For m sample fre-
quencies a set of m simultaneous equations is solved. Each
of these relates the required change in function value at that
sample frequency to the changes required in all the param-
eter values through the derivatives (as in a Taylor series
representation). Since the process is non-linear the solu-
tion of these linearized equations does not give the final
correct answer but only a local direction to proceed in
changing the parameter values by some fraction of what the
solution predicts. The process is repeated with succes-
sively new sets of parameter values.

As the process continues peaks form at frequencies
slightly different from the ones initially chosen. Dr..Cohn
developed, in his algorithm, a method of correcting for this
along the way. It is depicted in Figure 3, reproduced from
his paper. In 3(b) the sample frequency, Fi, is a little off,
so the function is sampled at frequencies slightly higher and
lower. By finding an equivalent parabola passing through
the three points a correction is derived which can then be
applied to the frequency Fi to bring it closer to the peak. At
successive iterations of the process parameter values and
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sample frequencies are changed until a final equal ripple
result is achieved with the specified amplitude, within a
specified accuracy.

In the paper Dr. Cohn provides formulas for the start-
ing sample frequencies for interdigital and combline filters
and shows results for a 15-element combline filter with
lumped capacitors at the rod ends and tapped input and out-
put couplings - an example of a non-synthesizable filter.

Other authors have described equal ripple optimization
algorithms somewhat similar to Dr. Cohn’s (see references
3 and 4 in [55] ). The most important differences are in
the way in which they handled the selection and updating of
the sample frequencies during the iterative optimization
process, and in the increased number of equations needed
for the solution. Dr. Cohn’s method, in this regard, is
unique and is very reliable as can be confirmed by this
author who has used it in a number of applications. Actu-
ally, all the peaks of the error function do not have to be
present at the start of optimization. Several iterations of
parameter changes can be made and the peaks will gradually
form. The sample frequency correction process can then be
started.

It has been pointed out by Dr. Cohn that the restriction
requiring an alternating sign error function, which limits
optimization to symmetrical filters, can be removed. This
can be done by making the optimization algorithm force the
zeros as well as the peaks of the equal ripple error func-
tion. If N peaks are present an additional set of (N-1)
sample frequencies will be needed for the zeros and this
same number of additional equations will be required.
Fortunately the unsymmetrical network has the same
number of additional optimizable parameters.

Dr. Cohn used the alternating sign algorithm in other
published work, dealing with filters [56] and couplers
[59].

An interesting point about optimization can be made
here. The general literature on optimization is extensive.
Although the equal ripple process is briefly mentioned as
the Remez Method dating back to 1934 (see reference 1 in
[55] ), it is really a special case of the general class of
“minimax” algorithms in which the minimum value of the
maximum (peak) error is sought. In the general case, the
number of peaks in the optimum result and their locations
are not known ahead of time and the optimization process is
quite different from the equal ripple algorithm just
described. Another point about band pass filters, in par-
ticular, is that optimization is usually only required for the
pass band. Fixing the ripple amplitude and the resonant
frequencies of resonators assures the stop band perfor-
mance, as predicted by an approximation function.

Dr. S. B. Cohn’s work in two unrelated areas - slot
line, and computer optimization - has been described. The
contributions in these two areas are significant. Spurred
by his introduction of slot line, a number of microwave
integrated circuit components using it have been developed.
His equal ripple optimization method, used by him as well
as by others has led to the development of useful new
microwave circuits. In the presentation emphasis will be
on applications both fOr slot line and for equal ripple
optimization.
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Fig.1 Waveguide Model Containing Capacitive
Iris and Dielectric Slab
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Fig. 2 Equai-ripple response functions
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